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This paper in four bullet points:

Many of the ethical issues that arise in machine learning
applications can be traced back to the quality of training data.

The way training data is labeled by humans is often a form of
structured content analysis, which has established best practices.

RQ: How many papers in an application domain of ML ---
classifiers trained on tweets --- report following these practices?

A: It varies substantially, showing need for more focus on data
labeling practices in ML education, evaluation, and regulation.
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Structured content analysis (or closed coding)
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Structured content analysis best practices:
“a systematic and replicable method” (Riff, Lacy, and Frederick 2013)
1. Define a “coding scheme” with procedures, definitions, and examples.

2. Recruit and train multiple “coders” (or "annotators”, “labelers”, or
“reviewers") with the coding scheme.

3. Have coders independently code at least a portion of the same items,
then calculate “inter-annotator agreement” or “inter-rater reliability.”

4. Define and follow a process of “reconciliation” for disagreements, e.g.
majority rule, talk to consensus, expert/leader decides.

5. Modify coding scheme, training, and/or reconciliation as needed.
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Dataset of ML application papers trained on tweets

164 papers whose titles & abstracts matched searches for:
(“machine learning”, “classif’, OR “supervi’)  AND (“twitter” OR “tweet”)
135 randomly sampled from arxiv.org, 29 randomly sampled from Scopus

Published in 2010-2018

Preprint never published | Postprint | Preprint of published paper | Non-ArXived (Scopus) | Total
Preprint never published | 57 - - - 57
Refereeq conference 40 {7 93 80
proceedings
Refereed journal article | - 8 7 6 21
Workshop paper - 2 3 0 5
Dissertation - 1 0 0 1
Total 57 51 27 29 164
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Annotation process

Annotators: Five undergraduate students working for course credit
independently reviewed each paper.

Reconciliation: Disagreement reconciled by talking to consensus,
facilitated by the team leader, who made the final decision.

Iteration: Two rounds of annotation, after low IAA rates in round 1.
Schema and instructions were modified after round 1.

IAA: mean percent total agreement across all questions was 84.4%.
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Coding scheme

13 questions per item, which
included definitions and examples
for all items. Instructions,
definitions, and examples totaled
~1,300 words.

Examples and definitions were
iteratively updated in round 1
when borderline cases were
discussed in reconciliation
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Lots of borderline cases:

What is “machine learning,” anyway? Do simple linear regressions with a cutoff count? We
said yes: any method without explicit rules where quality increases with the amount of data
(Arthur Samuel’s definition)

What is “human labeling”™? Does semi-automated labeling in bulk based on domain
knowledge count (e.g. using #ProLife and #ProChoice to label political opinion)? We
generally required discrete judgements on each item; hashtag example was external
human annotation b/c the Twitter user “self-labeled” it.

What about using an automated method for labeling training data, but validating the
classifier using individual human judgements? We said this isn’t human labeling.

For annotation source, who is an expert? We just looked for any claim of expertise beyond
a member of the public, taking the authors’ at their word.
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Questions we asked:

Is the paper presenting an original ML classification task?

Are the training data labels from human annotation?

Were the human labels from original labeling, an external dataset, or both?
Who labeled the dataset? (e.g. authors, turkers, experts)

Were the number of human annotators specified? (either total or per item)
Were instructions, formal definitions, or examples given to annotators?
Did annotators receive interactive training (beyond instructions/schema)?
For projects using crowdworkers, were annotators pre-screened?

Did multiple humans independently annotate every item (or some items)?
If so, were inter-annotator agreement metrics reported?

For projects using crowdworkers, was compensation reported?

12. Is there a link to the dataset available in the paper?

SCOWONOOO RGN
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A
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Summary results —

Original ML classification task_—-| 87%

Labels from human annotation —_I 65%

Used external human annotation _—I 33%

Used original human annotation_-l 75%

Human annotation source specified _- 76%

Definitions/examples given to annotators -— 43%
Annotator training details specified -h— 3%
Number of annotators specified _— 95%

Multiple annotator overlap-__ 50%

Reported inter-annotator agreement-- 70%
Link to dataset availableh— BN Yes 1%

Reported crowdworker prescreening_ W= No 100%

B Unsure 0%

Reported crowdworker compensation_

0 50 100 150
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Human annotation source breakout:

Annotation source ———_-
0 10 20 ( ' : ( '

30 40 50 60 70

B Paper's authors B No information B Experts B Crowdworkers B Other

Count Proportion

Paper’s authors 22 29.73%
No information 18 24.32%
Experts / professionals 16 21.62%
Amazon Mechanical Turk 3 4.05%
Other crowdwork 8 10.81%
Other 7 9.46%
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Distribution of annotation information scores

A roughly bi-modial distribution suggests there
are two populations of papers/studies.
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Distribution of annotation information scores by
publisher and corpus

ArXiv corpus Scopus corpus
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Limitations and future work

We caution against over-generalizing these results! We have
small sample sizes and arxiv.org is not representative.

Papers performing a classification task on Twitter data are
also not representative, but do span many disciplines.

We are currently working on an expanded study, with
additional questions, a refined process, and sampling from
peer-reviewed literature across many application domains.
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Discussion

Human annotation and labeling is as important as it is difficult.
We need to make space and time for methods and messiness!

Operationalization & construct validity decisions play out in the
design of human annotation processes (see Jacobs et al, 2020).
These should be made explicit!

Human annotation should be a core aspect of ML education and
any structured transparency documentation process/regulation.
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Discussion

For projects that presume a knowable & stable "ground truth”,
scientific reproducibility is a classic principle:

Is the labeling process described enough so any reader can,
with sufficient resources, independently produce a
substantively similar dataset?

@staeiou | stuart@stuartgeiger.com | arxiv:1912.08320 | bit.ly/gigofat2020



https://arxiv.org/abs/1912.08320

Discussion

For projects that presume a knowable & stable "ground truth”,
scientific reproducibility is a classic principle:

Is the labeling process described enough so any reader can,

with sufficient resources, independently produce a substantively
similar dataset?

What about when it is problematic to expect a “ground truth”?
We can look to debates between quantitative/positivist social
scientists and qualitative/interpretivist/critical social scientists and
humanists (e.g. grounded theory); these are similar debates!
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Thanks!

This work was funded in part by the Gordon & Betty Moore Foundation (Grant
GBMF3834) and Alfred P. Sloan Foundation (Grant 2013-10-27).

This work was also supported by UC-Berkeley's Undergraduate Research
Apprenticeship Program (URAP).

We thank many members of UC-Berkeley's Algorithmic Fairness & Opacity Group
(AFOG) for providing invaluable feedback on this project!

Get in touch, especially if you have jobs/internships for some great undergrads!

-- R. Stuart Geiger, Kevin Yu, Yanlai Yang, Mindy
Dai, Jie Qiu, Rebekah Tang, and Jenny Huang
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Other BIDS Data Science Studies research topics
(aka shameless self-promotion)

The BIDS Best Practices in Data Science Series

Career paths and prospects in data science

Sustainability of free and open-source software

communities (see SciPy 2019 keynote)

Reproducibility and open science

Case studies of ML systems (e.g. Wikipedia's ORES)
Integrating qualitative methods into data science

The ArXiV Archive (arxiv.org metadata in tidy CSVs)

The academic institutionalization of data science


http://tinyurl.com/bidsbp
http://bit.ly/careersdatasci
https://bids.berkeley.edu/research/visible-and-invisible-work-maintaining-open-source-software
https://bids.berkeley.edu/research/visible-and-invisible-work-maintaining-open-source-software
http://bit.ly/geigerscipy2019
https://bids.berkeley.edu/working-groups/reproducibility-and-open-science
https://arxiv.org/abs/1909.05189
https://bit.ly/qualds
http://github.com/staeiou/arxiv_archive
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Distribution of annotation information scores by
publication publication types
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Figure 4: Plotting the distribution of papers by topical and
disciplinary keywords, separated for papers using and not
using original human annotation.



From ArXiv sample From Scopus sample

Publisher Count Publisher Count

Year #in ArXivsample #in Scopus sample

ArXiv-only 58 Springer 7
2010 1 0 ACM 20 ACM 5
2011 2 2 IEEE 18 Elsevier 4
2012 2 2 Springer 14 SPC 1
ACL 12
413 38 ¢ Elsevier 1
2014 5 4 AAAL 3
2015 13 3 Sage 1
2016 29 5 CEUR 1
2017 36 4 PLoS 1
2018 39 9 UIC 1
ISCRAM 1
Table 14: Count of publications per year JMIR 1

Table 15: Count of publishers from both samples



Question % agreement, round 1 % agreement, round 2

original classification task 69.7% 93.9%
labels from human annotation 51.3% 82.9%
used original human annotation 72.0% 85.4%
used external human annotation 51.1% 63.4%
original human annotation source 44.3% 79.3%
number of annotators 38.2% 95.7%
training for human annotators 81.0% 84.8%
formal instructions 50.1% 82.9%
prescreening for crowdwork platforms 83.7% 89.0%
multiple annotator overlap 69.3% 81.7%
reported inter-annotator agreement 79.2% 83.5%
reported crowdworker compensation ~ 94.9% 89.0%
link to dataset available 82.1% 86.0%
Mean score 66.7% 84.4%

Median score 69.5% 84.8%




Summary results
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